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ABSTRACT

In 1933, H. Rainbow derived a digital filter that relates horizontal 
gravity gradient to slope of the causative body. The Rainbow filter helps 
point to techniques for making topographic corrections to airborne gravity 
data.

INTRODUCTION

In a remarkable report that anticipated modern techniques of digital data 
processing, H. Rainbow (1934) published digital filters relating torsion 
balance gravity measurements to slopes of two- and three-dimensional causative 
bodies. The method languished, probably because it required many regularly 
spaced measurements along a profile and so would have been operationally 
cumbersome at the time. With the recent advent of airborne gravity techniques 
(LaCoste and others, 1982), such profiles should become more and more common, 
so that it is time to give Rainbow filters a second look.

The fundamental equation of Rainbow filtering is 

(1) s = R*T,

where s is the slope along the profile direction of the side of the causative 
body, R is the Rainbow filter, T represents the horizontal gradient of the 
gravity field along the profile direction, and * represents digital 
convolution. For the ideal case of two-dimensional source bodies striking 
perpendicular to the profile direction, the Rainbow filter coefficients are 
given by

where H = average vertical depth of top of source body, D = horizontal 
interval between measurements, G = universal gravitation constant, and (f - 
density difference between source body and its surroundings. If we take H = 
D, so that the observed data is sampled at intervals equivalent to the depth 
of interest for investigating source bodies, equation (2) reduces to

'»

Numerical values of the coefficientsuT0n^% were given by Rainbow, and are 
graphed in figure 1. The Rainbow filter is symmetric, may be truncated at
order N with 2N+1 coefficients (R_N , R_N+I»     R-1» Ro > Ri>     %-!> RN^ » 
and converges as 1/N . Note that the numerical value of the coefficients is 
independent of truncation order N.



Terrain-correcting airborne gravity data

Suppose an airborne gravity survey is flown at constant altitude along a 
profile perpendicular to topography that is approximately two-dimensional. 
Suppose a radar altimeter or similar device measures vertical distance to the 
ground below the aircraft, and that this distance and the gravity field are 
digitally recorded at intervals corresponding to the average ground 
clearance. At profile-point i, the slope of the terrain below, s., and the 
horizontal gravity gradient, T., may be determined by an appropriate 
differencing scheme. Note that measured gravity gradient T. will be the 
superposition of components due to terrain T^(t) and components due to geology

(4) Tj, = T! (t) + Tt (g)

At this point we regard the Rainbow filter as relating topographic slope s. 
to terrain gradients only, so that

(5) s = R * T(t)

= R * (T - T(g)).

In equation (5), quantities s, R, and T are known, but T(g) is unknown and of 
interest to us. Hence we write

(6) T(g)

In words, horizontal gravity gradients may be terrain corrected by subtracting 
from the observed gravity gradient the convolution product of topographic 
slope with the inverse Rainbow filter.

Numerical simulation

Numerical simulation of the above process was done using a topographic 
feature consisting of a 2-km-wide flat-topped two-dimensional butte with a 6:1 
slope on one side and a 2:1 slope on the other side. The butte was 1 km high 
and the gravity survey was "flown" 0.5 km above its top. Its density was 2.67 
g/cm.

The calculations were performed using a Hewlett-Packard Model 85 desktop 
calculator with a Matrix ROM. Using this equipment, equation (5) was treated 
by solving the matrix system

The use of trade names is for descriptive purposes only and does not imply 
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Under this scheme, the inverse Rainbow filter was not calculated explicitly. 
No doubt, other, much more efficient numerical procedures for solving (7) 
could be devised that exploit the symmetry and sparseness of the Toeplitz-type 
matrix R.

Figure 2 shows Rainbow filter approximations to horizontal gravity 
gradient for filters of orders 2 through 7. The approximation is somewhat 
better for even orders than for odd ones, and (at least for this example) is 
nowhere good, and does not improve markedly for N greater than 4. In all 
cases, the filter has trouble handling the steep 2:1 slope, predicting higher 
gradients there than would actually be observed using first-order point-to- 
point differencing. Similarly, the filter gives a poor approximation along 
portions of the profile along which vertical distance to topography H and 
sampling distance D are not of comparable magnitude.

Figure 3 shows the effect of varying depth to sampling distance ratio H/D 
and sampling distance D over the same topographic feature. Because parameter 
D sets the scale of the calculation, the feature appears smaller for higher 
values of D. At the same time, calculated gravity gradients change .due to the 
relatively coarser differencing distance. Clearly the Rainbow filter is de 
tuned by using H/D ratios other than 1 (fig. 3a). There is some indication 
that the best choice for H=D is a distance from the highest peaks and that to 
the bottoms of the deepest valleys (figs. 3b, c). Figures 3c,d show a 
drawback of the Rainbow filter; namely, that it depends only on the ratio H/D 
so that its predicted gradients are independent of observation datum H. 
Obviously, however, true gradients do depend critically on this parameter.

Figure 4 shows the Rainbow filter estimate of gravity gradients for a 
draped survey. Here the observed gradient is exaggerated over that seen by 
the level survey of figure 2, but, because H=D, the Rainbow estimates are the 
same. Apparently the Rainbow filter does a better job with draped than level 
data.

In figures 5 and 6, the single-butte test topography is replaced by a 
two-hill test case. Again the Rainbow filter better approximates draped 
gradients (fig. 6) than level ones (fig. 5). Here, the optimum filter order 
is closer to N=3 (3 !/2 km window & length of left hill) or to N=5 (5 Va km 
window ;y length of right hill). Clearly the filter order should be chosen so 
as to match dominant wavelengths in the topography.

As derived, the Rainbow filter relates horizontal gravity gradients to
horizontal gradients in topography. Clearly it ought to be possible to
integrate both sides of the equation so as to relate gravity to topography



directly. The Rainbow coefficients should be uneffected by this process, 
though the constant of integration will have to be found that shifts the 
Rainbow estimates by the proper amount to match the observed gravity. Figure 
7 shows an effort along these lines, in which the integration constant was 
determined empirically in each case so as to (approximately) minimize RMS 
error. Again, using H=D, the same Rainbow estimates result whether the survey 
is supposed level or draped, but they fit the draped gravity better.

SUMMARY

The tests reported here represent attempts to numerically verify a half- 
century-old mathematical development. They show that the Rainbow filtering 
technique holds promise for terrain-correcting airborne gravity data in an on 
line mode. From these numerical experiments it appears that the Rainbow 
filter is best tuned when H=D, but that this choice removes a degree of 
freedom in the solution so that exactly the same Rainbow estimates result for 
data which is draped or level, or flown at different levels. There appears to 
be a better fit to draped than to level data. The optimum order (length) of 
the filter appears to depend on frequency content of the topography, but is 
very modest given present-day microprocessor capabilities. The Rainbow filter 
estimates quite well horizontal gravity gradients due to terrain, but it 
estimates total gravity due to terrain less well. (RMS errors are of the 
order of twice the 5-mGal precision of the present generation of airborne 
gravity measurements). This report considered two-dimensional topography 
only, but Rainbow gives the corresponding filter for the three-dimensional 
case in his paper. Similar filters for vertical gravity gradients, and for 
magnetic surveys, may be derived but will be different from the common 
horizontal gravity gradient-total gravity filter tested here. Shaping and 
optimization of such filters using modern filter design techniques definitely 
should be tried, given the degree of success attained using only the naive 
techniques reported here. Perhaps this study will encourage development and 
refinement of other techniques to filter topographic effects from airborne 
gravity and magnetic data.
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APPENDIX - Mathematical Development

Because Rainbow's report may not be available in many libraries today, 
the following repeats and expands upon his derivation of eqn. (1):

Start with the (vertical component of) gravity field due to a two- 
dimensional body, as observed at altitude H.

(A-l)

This equation comes from integrating the two-dimensional Green's 
function 2z/(x +z ) over the cross-section of the body. In other words

(A-2) - 7T

Because Rainbow was working with torsion-balance instruments, he 
determined the horizontal gradient

(A-3) 3)*
Now approximate the effect of 2-D topography of height 

supposing it to be condensed onto the topographic datum 2st0« We write

(A-4)

Substitution into (A-3) gives

(A-5)

Note that

(A-6)



Integrating (A-5) by parts

This is Rainbow's equation, though derived differently. Equation (A-7) 
gives horizontal gravity gradient as a weighted integral of topographic 
gradient, and is of the filter form we desire. Thus (A-7) represents a 
promising starting point for future efforts. Rainbow, however, was concerned 
with the inverse problem, that of finding gradients of buried topography from 
observed horizontal gravity gradients. We continue his deviation.

Comparing with (A-2) gives

The gravity gradient on topographic datum z=o is a constant times the 
topographic gradient.

, !,     ),Suppose g, x is known at 2M points in the interval (L 
spaced at interval D=L/M, so we may fit the Fourier Series r\

(A-9)

where

evenly

In the limit as

where



Because g, x is harmonic, we may downward continue from level H to 
topographic datum z=o:

TT&
(A-!

But

(A-14) ^ 0̂J 0) S= Jo e

=/e

Combining with (A-9) gives

This is the result cited in equations (1) and (2).
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Fig. 1. Chart showing normalized two-dimensional Rainbow filter.
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Fig. 2. Rainbow filter estimates (+) of first order difference horizontal 
gravity gradient (    ) as a function of filter order N. 
Topographic feature is a 2-D butte, (solid shading) 1 km high and 2 
km wide at its top, having 6:1 and 2:1 side slopes. Gravity is 
sampled at 0.5 km intervals on a level observation datum (- - - ) 
that passes 0.5 km over butte top. Units of profile curves are 
mGal/km. RMS represents root-mean-squared measure of error of fit 
between Rainbow estimates and gravity gradient, in mGal/km.
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Fig. 4. Gravity gradients observed on an observation datum draped at D=0.5 km 
above topography. For each order N, Rainbow filter estimates are the 
same as those for Fig. 2, but the match to the draped gradients is 
better.
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Fig. 5. Rainbow filter estimates for various orders N of gravity gradients on 
a level observation datum for a two-hill model.
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Fig. 6. Rainbow filter estimates for various orders N of gravity gradients on 
a draped observation datum, for a two-hill model.
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